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Abstract

The scale of safe assets suggests a structural demand for a safe wealth share

beyond transaction and liquidity roles. We study how investors achieve a ref-

erence wealth level by combining self-insurance and contingent liquidation of

investment. Intermediaries improve upon autarky, insuring investors with poor

self-insurance and limiting liquidation. However, delegation creates a con
ict

in states with residual risk. Demandable debt ensures safety-seeking investors

can withdraw to implement a safe outcome, so private safety provision is frag-

ile. Public debt crowds out private credit supply and investment, while deposit

insurance crowds them in by reducing liquidation in residual risk states.
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1 Introduction

Recent evidence suggests an inelastic demand for safe (i.e., nominally riskless) assets

as a stable share of wealth (Gorton et al., 2012). Historical evidence points to seg-

mented pricing and a distinct safety premium that responds to public debt supply

and a�ects bank funding as well as the degree of maturity transformation (Krishna-

murthy and Vissing-Jorgensen, 2012, 2015). This evidence has led to a focus on the

role of banks as the main private providers of safety (Stein, 2012; Dang et al., 2017).1

A segmented market for safe assets can largely be explained by liquidity and

transaction needs (Diamond and Dybvig, 1983; Gorton and Pennacchi, 1990), which

predict a correlation of safe-asset demand with aggregate transaction volumes, such

as GDP. Yet U.S. safe assets have risen dramatically as a share of GDP, while as a

share of total wealth they have been remarkably stable (see Figure 1).2 Along with

its role in transactions and for liquidity, the historical demand for safe assets appears

to re
ect a structural portfolio choice by investors.
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Figure 1: Safe assets as a fraction of wealth and GDP.

1Gorton (2017) and Caballero et al. (2017) review the safe-asset literature.
2Estimates of safe assets follow Gorton et al. (2012) but we exclude long-term private debt to

match the model de�nition of safety.
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We o�er an interpretation with a model of structural preference for safety. In-

vestors have a reference level of wealth in all states, similar to Stone-Geary preferences

in macroeconomics and habit formation in asset pricing.3 Investors can ensure their

safety through a portfolio of self-insurance and contingent liquidation of real invest-

ment. Some self-insurance is achieved by direct control over personal assets (such as

human capital) that ensures a higher minimum return in all states. Direct control

protects returns in non-veri�able contingencies (Grossman and Hart, 1986). Per-

sonal returns di�er across investors, re
ecting personal skills or circumstances (e.g.,

exposure to theft or expropriation), and cannot be safely transferred contractually

to others (Hart and Moore, 1994). Productive investment yields a higher expected

return and its downside risk can be controlled by contingent liquidation.

In autarky, all investors choose some self-insurance and invest the rest to im-

prove their average return. Investors with good personal returns choose to bear more

investment risk, avoiding interim liquidation when the expected value of investment

is positive (committed investment). Investors with poor self-insurance options in-

stead prefer to liquidate upon a chance of loss. In contrast, the e�cient benchmark

maximizes expected output subject to providing safety for all investors. Avoiding self-

insurance by low-return investors boosts aggregate investment and expected output,

while their safety is ensured by reallocating the proceeds from contingent liquidation.

Our main result is that competitive private intermediaries implement the e�-

cient allocation. They carve out safe and risky claims from contractible investment

payo�s, issuing safe debt and a su�cient amount of equity. In the intermediation

equilibrium, investors with high self-insurance returns still take care of their own

safety, while others invest in a debt claim backed by su�cient bank equity. Any

3Habit preferences can explain a high volatility of asset returns (Campbell and Cochrane, 1999)
and account for macroeconomic dynamics (King and Rebelo, 1993; Fuhrer, 2000).
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residual endowment is invested in committed form, either directly or via bank equity,

and equity is priced to match the expected return on direct committed investment.

For the senior debt claim to be safe, two conditions are necessary. The interme-

diary needs adequate loss-absorption capacity, a minimum safety capital requirement.

Investors in junior claims take losses when investment is liquidated but gain a large

levered payo� in high states. However, seniority in itself is insu�cient to ensure safe-

ty, as insurance naturally creates a risk con
ict between senior and junior claims in

the residual risk state. When interim information signals a positive expected value

but also a risk of loss, junior claimants prefer continuation (committed investment),

while safety-seeking debt holders prefer liquidation. Since the interim state is non-

veri�able, intermediaries cannot commit to a contingent liquidation plan or a shift in

control rights (Aghion and Bolton, 1992; Dewatripont and Tirole, 1994).

A demandable senior claim resolves this con
ict and implements the e�cient

outcome. The option to withdraw upon demand empowers safety-seeking investors

to force partial liquidation and allows banks to credibly promise safety.4

Our theory has rich implications for the volume and pricing of safe debt. Higher

pro�tability, lower opacity, and lower liquidation cost boost private supply and lead

to higher safe rates (a lower safety premium) and higher volumes of intermediation

and investment. Greater demand for safety, via a �rst-order stochastic dominance

shift in the distribution of self-insurance returns, increases the volume of bank debt

and investment. Under perfect competition, private safety supply adjusts to shifts

in net demand at a constant safe rate, until the private insurance capacity becomes

scarce. Then, adding loss-absorbing bank equity requires attracting investors with

4Calomiris and Gorton (1991) o�er evidence that demandability ensured a safe return in U.S.
banking history even before deposit insurance. Kacperczyk et al. (2017) show European banks can
issue debt at a safety premium only at short-term maturity.
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lower self-insurance returns, so the safe rate drops.5 Under imperfect competition

on deposits, the volume of bank funding and the safe rate always respond to shifts

in net safety demand. Both implications for the safe rate's response to changes in

safety demand are consistent with evidence presented in Krishnamurthy and Vissing-

Jorgensen (2012).

Since private safety provision relies on withdrawals, its expansion leads to

greater output volatility relative to autarky, even under scale-invariant default risk.

This fragility raises the issue of the public provision of �nancial safety. While a gov-

ernment cannot create additional safety by taxing investment returns, it can reallo-

cate it by taxing personal returns because of its superior enforcement power relative

to private contracting.6 We study public safety provision via public debt issuance

and deposit insurance. Both forms directly induce a larger scale of self-insurance by

high-return investors in anticipation of taxation to balance the government's budget.

Public provision of safety can complement or substitute its private provision.

Government debt issued to fund a public good crowds out the private provision of

safety in the form of safe bank debt, as it historically did (Krishnamurthy and Vissing-

Jorgensen, 2015). Its e�ect on investment depends on whether the value of public

investment compensates for the crowding out of private investment. In contrast,

deposit insurance can complement private intermediation. It reduces the interim rate

of liquidation in risky states and induces a higher safe rate and higher volumes of

safe debt (crowding in). Deposit insurance is e�ective at boosting investment when

interim asset opacity, measured by the chance of residual risk, and safety-seeking

withdrawals from banks are likely.

5Scarce safety capacity may be caused by a sharp fall in personal income or depressed liquidation
values, or when some assets are no longer deemed safe, as in Gennaioli et al. (2013).

6We abstract from any direct provision of safety, such as unemployment or health insurance.
As this form of government intervention is redistributive, our analysis does not assess its welfare
implication but simply describes its e�ect on investment and stability.
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The model is stylized but its results are robust to milder assumptions. Self-

insurance returns could be risky as long as direct control o�ers a minimum return

above the liquidation value of investment. Self-insurance returns may also be partially

contractible as in Holmstr�om and Tirole (1998), provided their pledgeable amount is

below the minimum self-insurance return. A general information and return structure

implies the same interim states, with a con
ict whenever the signal reveals a positive

continuation value but also a chance of loss on the senior claim. Finally, a market

solution can prevent costly liquidation if the private sector could create its own safe

liquidity on better terms than by liquidating investment. Since liquidating personal

assets or selling forward personal income is quite costly, an arbitrage strategy requires

additional self-insurance and is unpro�table for infrequent residual risk.

Literature. Recent work has described safety demand as in�nite risk aversion for a

subset of the population (Gennaioli et al., 2013; Caballero and Farhi, 2018) or as an

argument in the utility function (Stein, 2012; Krishnamurthy and Vissing-Jorgensen,

2012). Even a linear utility gain from safe assets can lead to extreme fragility for

banks (Stein, 2012) as well as shadow banks (Hanson et al., 2015) in the presence

of systemic risk. Our contribution to this e�ort is a structural preference for safety

common to all investors and a general treatment of safety options for investors before

�nancial claims are introduced. Banks funded with demandable debt emerge to o�er

an e�cient private insurance solution that improves upon autarky.

One motive for demandable debt is that it provides liquidity. In Diamond and

Dybvig (1983), it implements the e�cient insurance across investors subject to liquidi-

ty shocks. Demandable debt also facilitates transactions (Stein, 2012; Krishnamurthy

and Vissing-Jorgensen, 2015), avoids adverse selection in secondary markets (Gorton

and Pennacchi, 1990), and discourages information production (Dang et al., 2017).
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To establish safety preferences as an independent rationale, we abstract from liquidity

and transactions motives, asymmetric information, a monitoring or screening role of

intermediaries (Diamond, 1984; Holmstr�om and Tirole, 1997), and idiosyncratic risk

that favors pooling (Diamond, 1984; Diamond and Dybvig, 1983).

In our paper and in earlier work, demandability emerges as a solution to an

agency con
ict. Calomiris and Kahn (1991) show that a run commits the banker to

not absconding with funds in bad states, thus preserving asset value. In Diamond and

Rajan (2001), demandability is a threat that induces the banker to use relationship-

speci�c skills to maximize value and to not renegotiate its own debt. In contrast, the

con
ict in our setup is over future risk choices, and it arises only in residual risk states

when continuing investment maximizes expected value but endangers the safety of

senior debt.

A demand for safety as an independent driver of credit supply has rich im-

plications. Krishnamurthy and Vissing-Jorgensen (2012) document how bank credit

volume historically responds to changes in government debt supply, creating lend-

ing pressure independently from real funding needs. Credit supply shocks appear to

boost demand above productivity and add to volatility (Krishnamurthy and Vissing-

Jorgensen, 2015; Mian et al., 2017). Safety-seeking capital in
ows add to domestic

risk concentration and �nancial fragility (Caballero and Krishnamurthy, 2008).

2 Model

There are three dates, t = 0; 1; 2, and a single good. Investors of unit mass are

endowed with one unit at t = 0. They are risk-neutral once they consume a reference

level S at either t = 1 or t = 2 but su�er a large disutility below this level:
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u(c1; c2) =

8>>><>>>:
c1 + c2 c1 + c2 � S

if

�1 c1 + c2 < S;

(1)

where ct is consumption at date t and investors do not prefer early consumption at

t = 1. These preferences imply safety seeking, that is, investors wish to achieve an

income of at least S in all states to guarantee the reference level of total consumption.

Investors can choose between two investment technologies at t = 0. Each in-

vestor has an individual self-insurance option with a safe return r at t = 2 that is

heterogeneous across investors and distributed according to F (r) over the support

[rL; rH ]. The self-insurance return is an investor's type. These returns are observable

but non-contractible, since direct control makes self-insurance inaccessible to others.7

Productive investment is available to all investors. Its perfectly correlated and

contractible return at t = 2 is R with probability 
 2 (0; 1) or 0.8 Interim liquidation

of investment yields � 2 (0; R), so it is e�cient when the �nal return is 0.

At t = 1, a non-veri�able signal occurs with probability � 2 (0; 1), resolving all

uncertainty over the investment return at t = 2 (so 1�� is a measure of asset opacity).

There are three interim states summarized in Figure 2. The return is certainly R in

the high state H, while it is certainly 0 in the low state L. Without a signal, there is

residual risk (state RR). The signal occurs independently of the investment return.

Continuation in state RR yields a higher expected return than liquidation, 
R >

�, so an investor who has achieved safety prefers a committed investment that is

liquidated in state L only. Uncommitted investment is also liquidated in state RR.

7Self-insurance assets are illiquid at t = 1, which we relax in section 4.3.
8We consider a continuous return and information structure in section 4.4.
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Figure 2: Payo�s and information structure of investment.

Self-insurance returns exceed the liquidation value, while the expected return on

committed investment PV exceeds self-insurance returns. Finally, investors cannot

achieve safety on their own simply by investing because the liquidation value is low:

PV � 
R + (1� 
)�� > rH > rL � S > �: (2)

Autarky. We denote by x the choice of self-insurance, so the residual 1 � x is

invested. It is never optimal to self-insure more than x � S
r
, as this amount ensures

safety, and investment has a higher expected return. It is also never optimal to self-

insure less than x � S��
r��

< x, as even full liquidation of investment would not achieve

safety in states L and RR. Each investor maximizes expected autarky output Y A

subject to achieving safety (the reference level of total consumption) in all states:

xA � arg max
x2[x;x]

Y A(x; r) = PV � x[PV � r]� (1� �)

�

R

�
� 1

�
(S � rx); (3)

where expected output contains three terms: the present value of full committed

investment minus the opportunity cost of self-insurance and any expected loss from
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liquidation in state RR. When the interim state is L (H), investors fully liquidate

(do not liquidate). In state RR, investors liquidate the minimum fraction needed to

achieve safety, `(x) � S�rx
�(1�x)

2 [0; 1], where `(x) = 0 and `(x) = 1 for all r.

Since all expected returns are linear in x, the optimal portfolio choice in autarky

is a corner solution. It is de�ned by a threshold return on self-insurance such that

the marginal investor is indi�erent between achieving safety by more self-insurance

and committed investment or by less self-insurance and uncommitted investment:

rA �
PV

1 + (1� �)
�

R

�
� 1
� : (4)

We assume this threshold is interior to its support, rA 2 (rL; rH). This condition can

be expressed in terms of bounds of the probability of revelation, 0 < �e < � < e� < 1.

Proposition 1 Autarky. Investor types r < rA self-insure the amount x and fully

liquidate in states RR and L. By contrast, investor types r > rA self-insure the

amount x and fully liquidate in state L only. Aggregate self-insurance in autarky is

XA =
R rA
rL

x(r)dF (r) +
R rH
rA

x(r)dF (r) and investment is IA � 1�XA.

E�cient allocation. Our benchmark is the allocation chosen by a social planner.

This allocation is constrained e�cient as the proceeds from self-insurance are non-

contractible. As a result, investors cannot self-insure on behalf of others, nor can the

proceeds from self-insurance be redistributed by the planner. However, the planner

can redistribute the proceeds from investment and thus improve upon autarky.

Appendix A derives and solves the planner's problem. With safety preferences,

maximizing utilitarian welfare is maximizing aggregate expected output conditional
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on safety for all investors. A planner requires high-return investors to achieve their

own safety via self-insurance and to invest all residual endowment. The planner

commits to allocating contingent liquidation to low-return investors for their safety.

This allocation avoids unproductive self-insurance, as only investors whose return

is above some threshold rE self-insure, xE(r) = S
r
1fr�rEg, where 1 is the indicator

function. Aggregate self-insurance is X(rE) �
R
rE

S
r
dF (r) and investment is I(rE) �

1�X(rE).

The e�cient threshold rE maximizes expected output in (5) subject to an ag-

gregate safety capacity constraint in (6):

max
rE

Y (rE) = PV �

Z rH

rE
(PV � r)

S

r
dF (r)� (1� �)

�

R

�
� 1

�
SF (rE) (5)

s.t. S F (rE) � � I(rE): (6)

The safety capacity constraint ensures that the liquidation value of total investment

su�ces for the safety for all low-return investors, r � rE. We �rst study a slack con-

straint and subsequently consider parameter values that imply scarce safety capacity.

Proposition 2 E�cient allocation. If safety capacity is abundant, S F (rA) �

� I(rA), the unique e�cient allocation is de�ned by a threshold rE = rA above which

investors self-insure an amount xE(r) = S
r
and invest all the residual endowment.

Safety for low-return investors is ensured by liquidating a fraction of investment,

`(rE) = SF (rE)
�I(rE)

� 1, in the residual risk state. Aggregate self-insurance is lower than

in autarky, XE < XA, and investment and expected output are higher, IE > IA and

Y E > Y A.

Proof See Appendix A.
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Figure 3 shows self-insurance volumes. High-return investors ensure their own

safety in both cases, while low-return investors self-insure less than in autarky.

Figure 3: Self-insurance under autarky xA (dashed, blue) and the e�cient allocation
xE (solid, red). Parameters: � = 0:4, S = 0:5, rL = 0:6, rH = 1, 
 = 0:5 = �, R = 4.

3 Intermediation with demandable debt

This section shows how competitive intermediaries implement the e�cient allocation.

Any implementation needs to consider the participation constraints of investors. In-

termediation implies a delegation of control over investment, whereby intermediary

equity holders decide on interim liquidation. We will see how investor participation

shapes the contractual form required for intermediaries to attract funding.

Table 1 shows the timeline. At t = 0, intermediaries attract funding in compet-

itive markets. Next, investors can self-insure, and both investors and intermediaries

invest. At t = 1, the interim state is realized and withdrawals occur (if a claim is
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demandable). Direct investors and bank equity holders choose whether to liquidate

some investment and interim consumption occurs. At t = 2, all returns are realized,

claims are paid out, and �nal consumption occurs.

t = 0 t = 1 t = 2

1. Intermediaries issue claims 1. Interim state realized 1. Maturity of risky

2. Risky investment and (2. Withdrawals) and safe technologies

self-insurance 3. Liquidation 2. Intermediaries pay claims

4. Consumption 3. Consumption

Table 1: Timeline of events.

To o�er a safe claim, intermediaries can carve out the senior portion (debt)

of the veri�able investment return, backed by an adequate amount of risk-absorbing

junior claims (equity). Let e be equity and d be debt with face value r�, the safe rate.

When all funding is invested, I = d+e, the safety of debt requires that the liquidation

value of investment su�ces to repay all debt claims, �I � r�d. This minimum equity

level, e � r���
�

d, represents a market-imposed capital ratio required to attract funding

from safety-seeking investors. That is, seniority ensures the safety of debt in state L,

when debt and equity holders agree to liquidate investment. Equity receives a large

payo� in state H, when debt and equity holders agree to continue investment.

However, seniority per se cannot achieve safety. A con
ict between debt and eq-

uity holders arises in state RR, since continuation of investment has a higher expected

return than liquidation but may produce losses. Equity holders value their payo� as

part of their risky portfolio so they prefer continuation, while safety-seeking investors

holding debt prefer to liquidate. Since the signal is not veri�able, there can be no

contractual solution by a state-contingent liquidation rule or allocation of control, nor

can there be trading of claims as there is no interim liquidity. Hence, safety-seeking

investors would not invest in any long-term debt claim on the intermediary.
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The solution is for intermediaries to o�er demandable debt. The option to with-

draw upon demand at t = 1 forces partial liquidation of investment and implements

a safe payo� in the residual risk state. Debt is demandable at face value at t = 1

because there is no need for a liquidity premium. Proposition 3 summarizes.

Proposition 3 Portfolio choice of investors. An intermediary can attract safety-

seeking funding by o�ering demandable debt backed by enough loss-absorbing equity, e.

Low-return investors (r < r�) choose an amount of demandable debt, S
r�
, that ensures

safety, while high-return investors (r � r�) self-insure. The residual endowment is

invested in equity provided it earns a return of at least PV , otherwise it is invested

directly.

All investors are o�ered the same rate under perfect competition. Investors

with r � r� (low-return investors) prefer demandable debt over self-insurance, so the

aggregate volume is obtained by adding individual demand for safe debt, S
r�
, over the

range of investors relying on the intermediary for safety, d(r�) = SF (r�)
r�

. Investors with

r > r� (high-return investors) self-insure, so the aggregate volume isX =
R rH
r�

S
r
dF (r).

Taking the safe rate r� as given, intermediaries choose debt and equity to max-

imize expected equity value V , that is, the value of investment net of debt payments

and the expected liquidation losses under residual risk. All returns are linear, so in-

termediary size does not matter. As shown in Appendix B, each intermediary solves:

max
d;e

V (d; e) � PV

�
e+ d

�
1�

r�

rA

��
s.t. (7)

V � PV e; e � e; (8)

where the participation constraints in (8) are that equity holders require at least the
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expected return on direct committed investment, and debt holders require interme-

diaries to be su�ciently capitalized, so bank debt is indeed safe.

Proposition 4 Private provision of safety. Competitive intermediaries attain

e�ciency by issuing safe demandable debt, d� = SF (rE)
rE

, at face value, r� = rE, backed

by equity, e� � e, priced to match the return, PV . In the residual risk state, low-

return investors withdraw safe debt, forcing liquidation of a fraction, `(r�) = r�d�

�(d�+e�)
,

of investment. Aggregate investment is I� = I(r�) = 1�
R rH
r�

S
r
dF (r) = IE = 1�X�.

Proof See Appendix B.

The capital structure of the intermediary e�ciently transfers resources across

investors. In state L, resources are transferred from high- to low-return investors

via seniority. The same net transfer occurs in state RR via demandability, ensuring

partial liquidation of investment. The combination of seniority and demandability

ensures that low-return investors can achieve safety in all states via a claim on the in-

termediary. In state H, the equity claim receives a high-levered payo�, so high-return

investors are compensated for losses in other states. Because of perfect competition,

equity holders earn the opportunity cost, namely the return on committed investment,

and low-return investors capture the entire surplus gained over autarky.

Intermediary equity needs to be at least e to make debt safe. Any additional

investment is made either directly or through the intermediary via more equity, since

investors who have achieved safety are indi�erent. At maximum leverage, �� � d�

e�
=

�
r���

, investment is fully liquidated in state RR to ensure safety, `� = 1. For lower

leverage, all investment above what is required to repay debt withdrawals is continued,

so the equilibrium allocation is invariant to intermediary leverage below ��.
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Changes in the safe rate, r�, can have an ambiguous e�ect on the supply of

safety-seeking funding, d(r�). At the intensive margin, low-return investors need less

demandable debt as its return r� rises, while at the extensive margin some investors

who used to self-insure switch to safe debt. To ensure that the supply of safety-seeking

funding increases in the safe rate, we maintain throughout the following regulatory

condition on the distribution of self-insurance returns, r f(r) > F (r).

Proposition 5 The comparative statics for a slack safety constraint are:

(a) Better investment characteristics (higher R, 
, �, �) increase the safe rate r�, the

volume of safe debt d�, and investment I�.

(b) Safer investment: a mean-preserving compression (lower return R or success

probability 
 and higher liquidation value � for unchanged PV ) increases the

safe rate r�, volume of safe debt d�, and investment I�.

(c) A downward shift in the distribution of self-insurance returns F (r), according to

�rst-order stochastic dominance, increases the volume of safe debt d� and invest-

ment I�. The safe rate r� and maximum leverage �� are una�ected.

(d) Maximum leverage �� decreases in R, �, and 
.

Proof See Appendix C.

The �rst two comparative statics relate to the supply of safety. Better invest-

ment characteristics increase the opportunity cost of self-insurance. Thus, the return

on safe debt r� increases as more investors rely on the intermediary for safety, boost-

ing total investment at the cost of self-insurance. A mean-preserving reduction in
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investment risk improves the safe component of investment (higher liquidation val-

ue), making uncommitted investment more attractive. As a result, both the return

on and volume of safe debt increase and so does investment.

The next comparative static relates to the demand for safety. A �rst-order

stochastic dominance downward shift in the distribution of self-insurance returns

implies a greater mass of low-return investors. The e�ect is more demand for safe

debt, which requires more intermediary equity and implies more investment.

Interestingly, maximum intermediary leverage only depends on liquidation value

and the endogenous return on safe debt. It increases when the safe rate falls (e.g.,

for lower 
, �, and R), as less equity is needed to insure the promised payment. In

contrast, a lower liquidation value has an ambiguous e�ect. It reduces the equilibrium

return on safe debt, but more equity is required to make debt safe.

As long as there is enough risk-absorption capacity and perfect competition, the

e�cient threshold for safety production and the pricing of safe debt r� is invariant to

the scale of intermediation. Intermediaries accommodate any change in safety demand

via greater safe debt issuance backed by more loss-absorbing equity. However, once

the safety capacity is constrained or when competition is imperfect, changes in safety

demand a�ect the safe rate, as we show next.

When safety needs exceed the insurance capacity at the unconstrained rate,

even full investment in bank equity fails to o�er enough risk-absorption capacity.

This scenario may arise under a high reference level relative to endowment (high S),

or when many investors have poor self-insurance options (F (rA) is high). In the case

of scarce safety capacity, more investors must self-insure (extensive margin), so the

equilibrium safe rate is lower, r� = rSC = rE < rA.
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Proposition 6 Scarce safety capacity. If S F (rA) > � I(rA), then the return

on safe debt is below its unconstrained e�cient level, rSC < rA, and investment is

below its unconstrained level, I(rSC) < I(rA). To ensure safety, investment is fully

liquidated in the residual risk state, `(rSC) = 1. The safe rate, rSC, increases in the

liquidation value �. When G(r) �rst-order stochastically dominates F (r), then the

safe rate is higher, rSCG > rSCF , and maximum intermediary leverage lower, ��G < ��F .

Proof See Appendix D.

Several changes may cause a shift to a safety-capacity-constrained equilibrium.

When liquidation values are low, the safety capacity constraint becomes more binding

and depresses the safe rate. Similarly, a downward shift in the distribution of self-

insurance returns (�rst-order stochastic dominance) reduces self-insurance capacity

and leads to a lower safe rate. In our setup, in both cases maximum leverage ��

decreases, as less equity is required to repay cheaper safe debt.

For imperfect competition, we suppose intermediaries have market power on

the pricing of safe debt (e.g., Drechsler et al., 2017). For simplicity, we consider a

monopolist intermediary that has to o�er the same rate to all debt holders. Then,

the monopolist intermediary trades o� a lower debt volume against a higher margin.

A lower safe rate, rM � r�, requires lower risk-absorbing equity, e � e = rM��
�

d,

and attracts an amount, dM = SF (rM )
rM

, of debt. As a result, safety-seeking investors

keep some surplus relative to autarky. Given an investment, IM = dM + e, the

intermediary needs to liquidate a fraction, `M = SF (rM )
�IM

� 1, in the residual risk

state, where we consider a slack aggregate safety constraint. The expected equity

value is:

�(rM ; e) � PV e+ PV
SF (rM)

rM

�
1�

rM

rA

�
: (9)
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Proposition 7 Imperfect Competition. A monopolistic intermediary sets the

safe rate below the e�cient level, rM < rA, where the former is implicitly de�ned by:

f(rM)

F (rM)
=

rA

rM(rA � rM)
: (10)

When F (r) is �rst-order stochastically dominated by G(r), the safe rate and safe debt

volume are lower, rMF < rMG and dMF < dMG , and maximum leverage is higher, ��F > ��G.

Proof See Appendix E.

More demand for safety according to a �rst-order stochastic dominance shift

reduces the safe rate of the monopolistic intermediary, with similar results for an

oligopoly. This pricing result implies the rankings for debt issuance and leverage.

4 Extensions

Having analyzed the private provision of safety, we turn to its public provision via pub-

lic debt issuance or deposit insurance. We also study private arbitrage opportunities

with liquid self-insurance returns and continuous investment returns. Throughout,

we study the benchmark case of perfect competition and abundant safety capacity.

4.1 Public debt issuance

At t = 0, a government provides a public good, valued g, by issuing an amount of

public debt G > 0 to be repaid at t = 2. For public debt to be safe, it must be backed

by taxation in all states. Speci�cally, we consider a lump-sum tax T on all investors
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that allows the government to break even.9 We use subscript G to denote quantities

with public debt issuance, and rG for the endogenous return on public debt.

Proposition 8 Crowding out. If G < �G � SF (rA)
rA(1�F (rA))

, public debt earns the safe

rate, rG = r� = rA, and is held by low-return investors. Its issuance crowds out the

private provision of safety, dG < d�, and investment, IG < I�.

Proof See Appendix F.

Since public and private debt are safety substitutes for low-return investors,

their returns are equalized as long as public debt issuance does not capture the entire

market (G < �G). The safe rate on bank debt remains constant, since interim liqui-

dation of investment in the residual risk state is una�ected by public debt issuance.

Since public debt issuance requires resources at t = 0, investment is crowded out.

The implication of crowding out of private safety provision and investment replicates

the result of Krishnamurthy and Vissing-Jorgensen (2015) in a context with safety

preferences and is consistent with evidence documented in their paper.

4.2 Deposit insurance

Consider a deposit insurance fund that insures a fraction, � 2 (0; 1), of debt. The in-

termediary has enough funds when the investment return is high, and it is su�ciently

capitalized to repay senior claims when it liquidates investment. Thus deposit insur-

ance is relevant only in the residual risk state followed by a low investment return.

We use subscript DI to denote quantities with deposit insurance.

9Taxing liquidation proceeds at t = 1 simply redistributes scarce safe assets, while taxing proceeds
from risky investment at t = 2 may not produce any revenue. For public debt to be safe, the taxation
of self-insurance returns at t = 2 is required, so we suppose that a government's statutory power
allows their taxation, even though these proceeds cannot be transferred via contracts.
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Proposition 9 Crowding in. Marginal deposit insurance increases the safe rate,

drDI
d�

���
�!0

> 0, and increases the private provision of safety, ddDI
d�

���
�!0

> 0. Moreover,

if the distribution f(r) satis�es the decreasing reverse hazard rate property, then there

exists a unique �� such that private investment increases, dIDI
d�

���
�!0

> 0, for all � � ��.

Proof See Appendix G.

Deposit insurance ensures a safe payment at t = 2, so debt holder incentives to

withdraw are reduced. Thus, intermediaries have to liquidate less in the residual risk

state, increasing their expected asset value. As a result of competitive pricing of debt,

the safe rate increases and intermediaries issue more safe debt. We conclude that, for

deposit insurance, the private and public provision of safety are complements.

Two opposing forces a�ect the impact of deposit insurance on investment. On

the extensive margin, deposit insurance increases the safe rate and avoids some liqui-

dation of investment in the residual risk state, which increases the ex-ante incentives

for investment. On the intensive margin, by contrast, deposit insurance has to be

funded and forces larger volumes of self-insurance in all states by those investors who

self-insure. The net impact on investment depends on the probability of the residual

risk state. If it is likely enough|that is, investment is su�ciently opaque, � � ��|then

crowding in extends from the private provision of safety to private investment.

4.3 Private arbitrage

In a liquidity insurance setup, withdrawals that force liquidation are undesirable

(Diamond and Dybvig, 1983), while liquidation of investment in the residual risk

state is an essential part of private safety provision. Nonetheless, for any investor
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who has achieved safety, liquidation in the residual risk state is wasteful because the

expected value of continuation is larger. Would a private solution emerge whereby

some investors choose to become arbitrageurs to bene�t from preventing occasional

liquidation?

Any arbitrage strategy requires safe resources at t = 1 to avoid liquidating in-

vestment. Therefore, we relax here the assumption that self-insurance is fully illiquid

at t = 1. Selling personal self-insurance assets on short notice requires a steep dis-

count (as in the case of one's personal residence) while selling forward future labor

income may be di�cult. Thus we assume that early liquidation of self-insurance

assets yields a fraction � > 0 of its �nal return r.

Consider the payo� of arbitrage. With probability �, no arbitrage opportunity

arises and the investor consumes r at t = 2. With probability 1 � �, the residual

risk state arises and self-insurance is liquidated to yield �r. The arbitrageur buys the

safe debt claim from safety-seeking investors and negotiates with the intermediary to

avoid liquidation. The maximum gain from this strategy arises when the arbitrageur

has all the bargaining power with no negotiating costs, with a payo� equal to the full

return R
�
with probability 
 or zero otherwise. The expected return from arbitrage is

�r+(1� �)�r
R
�
. The highest arbitrage return possible can be achieved by investors

with the best self-insurance option. Thus, private arbitrage is unpro�table if its gain

is below its opportunity cost at t = 0, the present value of committed investment.

Proposition 10 No private arbitrage. If � < ~� �
PV

rH
��

1��
�

R
, private arbitrage

cannot prevent liquidation of investment in the residual risk state.

An arbitrageur cannot increase its expected pro�ts by leverage. Investors who

have already achieved safety have the same opportunity cost, PV ; and safety-seeking
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investors do not invest in the arbitrage strategy since it sometimes produces losses.

In sum, there is no arbitrage capital when runs are rare. Since liquidity in a residual

risk state is limited, tradable claims also could not avoid liquidation.

4.4 Generalizing the return and signal structure

Demandability resolves a potential con
ict at the interim date when new information

arrives. Our result also holds under a more general, continuous information structure

and a continuous return distribution. We assume next that the signal always occurs

but is imprecise. Let the investment return, R � 0, follow a continuous distribution

with cumulative distribution function, J(R), and a positive present value at t = 0,

so
R1
0
RdJ(R) > rH . Also suppose that the posterior distribution after any signal at

t = 1 precisely reveals the lowest possible value, RL. The expected return conditional

on this signal is �(RL) �
R1
RL

RdJ(R).

There are again three interim states. First, when the signal is su�ciently high,

continuation has a higher expected value, �(RL) � �, and its minimum value ensures

safety of debt, RLI � rd. This case corresponds to state H in the baseline model. If

the signal suggests a risk of loss and liquidation has a higher value, �(RL) < �, there is

consensus on liquidation (as in state L). When the signal takes an intermediate value,

there is a con
ict between safety-seeking and return-seeking investors, � � �(RL) and

RLI < rd, respectively. While continuation of investment still has a higher expected

value than liquidation, RL is not high enough to always ensure safety (as in state

RR). This generalization highlights the role of an asset's minimum return in a safety

context.
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5 Conclusion

We o�er a theory of �nancial intermediation and demandable debt based on investor

preferences for safety, an approach consistent with recent evidence on the scale of safe

assets and on their segmented pricing. Our simple setup analyzes how individuals

may achieve their reference wealth even before the introduction of �nancial assets

thanks to direct control over personal assets and real investment. Financial inter-

mediaries funded by demandable debt can improve upon autarky by providing more

e�cient insurance, boosting investment and expected output. Speci�cally, by issuing

demandable senior claims backed by adequate risk-bearing capital, banks can commit

to a safe payo�. Although intermediation produces a con
ict between debt and equity

holders in residual risk states, the option to withdraw upon demand completes the

contract and directly implements a safe payo� via partial liquidation of investment.

The private production of safe assets satis�es a safety demand in excess of pub-

lic debt, but only at the cost of fragility. This is because it requires precautionary

liquidation of investment in states when its expected value is positive yet continuation

is too risky for safety-seeking investors. While the fragility associated with demand-

able debt is well appreciated in the literature, our contribution is to o�er a structural

model of safety demand, rather than in reduced form. We allow for a more precise

interpretation of the causes of risk intolerance in a general framework where agents

with the same preferences face di�erent circumstances, choosing to either demand or

supply safety.

In a safety setup, public debt naturally competes with private safe-asset pro-

duction. Public debt expansion reduces intermediation (crowding out), while deposit

insurance can support it (crowding in). The model implications are consistent with

the recent historical evidence on crowding out, safety premia, and fragility (Krish-
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namurthy and Vissing-Jorgensen, 2012). Signi�cantly, they o�er some foundation to

interpret credit supply drivers of economic cycles. Next to deregulation (Borio et al.,

2011), safety demand is emerging as a novel component of credit cycles that leads to

instability (Jorda et al., 2011; Krishnamurthy and Vissing-Jorgensen, 2015). Shifts in

demand for safety may be due to habit changes, global imbalances, or demographics,

and may lead to excess credit, consistent with recent evidence (Mian et al., 2017).
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A Proof of Proposition 2

We formally state and solve the planner's problem. An investor's type is its self-

insurance return, r 2 [rL; rH ], with probability density function f(r) and cumulative

distribution F (r). Critically, the return on self-insurance is non-contractible, so the

proceeds of self-insurance cannot be credibly promised to another investor or taxed

and redistributed by the planner. Thus, redistribution across investors requires con-

tractible investment and contingent liquidation at t = 1, as will become clear below.

The state of nature st is s1 2 fH;RR;Lg and s2 2 fH;Lg. The contractible re-

turn on investment at t = 2 is R(s2) = R 1fs2=Hg, with non-contingent liquidation val-

ue �. The history of states �t is �1 = s1 and �2 = f(H;H); (RR;H); (RR;L); (L;L)g.

The probabilities of a history, �(�t), are �(H) = 
� = �((H;H)), �(L) = (1� 
)� =

�((L;L)), �(RR) = 1� �, �((RR;H)) = 
(1� �), and �((RR;L)) = (1� 
)(1� �).

The choice variables are (1) self-insurance by investors of type r for their own

safety purposes, x(r) 2 [0; 1]; (2) the proportion of state-contingent interim liquida-

tion of investment, `(s1) 2 [0; 1]; (3) the allocation of proceeds from investment at

t = 2 contingent on type and the history of states, �(r; �2) � 0; and (4) consumption

levels contingent on type and the history of states, fc1(r; s1); c2(r; �2)g, with ct(�) � 0.

The aggregate volumes are X �
R rH
rL

x(r)dF (r) for self-insurance and I � 1 �X for

investment. The objective is to maximize the expected consumption of investors:

max W �

Z rH

rL

X
�2

�(�2)
�
c1(r; �2[1]) + c2(r; �2)

�
dF (r); (11)

where �2[1] is the �rst element of �2, for example RR in the history (RR;L). There are

several constraints. A resource constraint at t = 1 states that aggregate consumption

at t = 1 comes from liquidation of investment in each state, where we ignore weak
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inequalities because the objective function is strongly monotone in consumption:

Z rH

rL

c1(r; s1)dF (r) = `(s1)�I; 8s1: (12)

The proceeds from liquidation can be freely redistributed between investors, so only

an aggregate constraint is relevant. A resource constraint at t = 2 states that con-

sumption for each type and in each state comprises the proceeds from self-insurance

and allocated proceeds from investment, where the allocation shares add up to one:

c2(r; �2) = rx(r) + �(r; �2)
�
1� `(�2[1])

�
R(�2) I; 8(r; �2); (13)

1 =

Z rH

rL

�(r; �2)dF (r); 8�2: (14)

A safety constraint states that each investor achieves the reference consumption level:

c1(r; �2[1]) + c2(r; �2) � S; 8(r; �2): (15)

Finally, a participation constraint of each investor states that each investor achieves

at least its autarky level of expected consumption:

X
�2

�(�2)
�
c1(r; �2[1]) + c2(r; �2)

�
� Y A(r); 8r; (16)

where Y A(r) � Y A(xA(r); r) is the expected autarky output under the optimal au-

tarky portfolio choice, xA(r). Thus, the aggregate expected output in autarky is

Y A �

Z rH

rL

Y A(r)dF (r) (17)

= S + PV

"
1�

�

rA

Z rA

rL

r � S

r � �
dF (r)�

Z rA

rL

S � �

r � �
dF (r)�

Z rH

rA

S

r
dF (r)

#
:
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We turn to solving for the e�cient allocation. Ignore the participation con-

straints; we show below how they are satis�ed. Integrating the resource constraint at

t = 2 over investors, we obtain for aggregate consumption:

Z rH

rL

c2(r; �2)dF (r) =

Z rH

rL

rx(r)dF (r) + (1� `(�2[1]))R(�2)I; 8�2; (18)

since the allocation shares add up to one. Critically, this approach requires us to

restrict attention to x 2 [0; S
r
], since self-insurance cannot be done on behalf of others

and it is never optimal to self-insure more than what already achieves safety in all

states, given that the opportunity cost of self-insurance is PV > r.

In history (H;H), it is optimal not to liquidate, `�(H) = 0 = c�1(r;H), be-

cause R > � and the reference consumption level can be achieved at either date.

The aggregate resource constraint at t = 2 implies that
R rH
rL

c2(r; (H;H))dF (r) =R rH
rL

rx(r)dF (r) + RI. In history (L;L), it is optimal to liquidate fully, `�(L) = 1,

since � > 0. The aggregate resource constraints imply that
R rH
rL

c1(r; L)dF (r) = �I

and
R rH
rL

c2(r; (L;L))dF (r) =
R rH
rL

rx(r)dF (r). Consider state s1 = RR. Let the

liquidation proportion be ` � `(RR) 2 [0; 1], so the resource constraint at t = 1

implies
R rH
rL

c1(r; RR)dF (r) = `�I. The resource constraint at t = 2 depends on

which return on investment is realized:
R rH
rL

c2(r; (RR;L))dF (r) =
R rH
rL

rx(r)dF (r) orR rH
rL

c2(r; (RR;H))dF (r) =
R rH
rL

rx(r)dF (r) +RI.

Since the proceeds from investment can be rearranged across investors at either

date, it su�ces to satisfy the safety constraint in the aggregate:

Z rH

rL

�
c1(r; �2[1]) + c2(r; �2)

�
dF (r) � S; 8�2: (19)

We study the safety constraint for each history. For (H;H), it reduces to R+
R
(r �
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R)x(r)dF (r) � S, where we used the de�nition of I. This inequality holds strictly

for any choice of x(r), since R > r � S. For (L;L), the safety constraint reduces toR rH
rL

(r � �)x(r)dF (r) � S � �, which can be rewritten as:

�I � S �

Z rH

rL

rx(r)dF (r); (20)

so some self-insurance by investors is required. The history (RR;L) is more restrictive

than (RR;H) since fewer resources are available at t = 2. It can be stated as:

` �
S �

R rH
rL

rx(r)dF (r)

�I
: (21)

Since ` � 1, this constraint is more restrictive than that in history (L;L).

Using the above resource constraints for each history, we simplify the objective

function to the following reduced optimization problem subject to safety constraints:

max
`2[0;1];fx(r)2[0;S

r
]g
W = PV I +

Z rH

rL

rx(r)dF (r)� (1� �)

�

R

�
� 1

�
`�I (22)

s.t. I = 1�

Z rH

rL

x(r)dF (r); ` �
S �

R rH
rL

rx(r)dF (r)

�I
: (23)

Since dW
d`

= �(1� �)
�

R

�
� 1
�
�I < 0, `� =

S�
R
rH
rL

rx(r)dF (r)

�I
and W (`�) = PV I +R rH

rL
rx(r)dF (r)� (1� �)

�

R

�
� 1
� �

S �
R rH
rL

rx(r)dF (r)
�
, the reduced problem is:

max
fx(r)2[0;S

r
]g
W = PV �

Z rH

rL

(PV � r)x(r)dF (r)� (1� �)

�

R

�
� 1

��
S �

Z rH

rL

rx(r)dF (r)

�

s.t. S �

Z rH

rL

rx(r)dF (r) � �

 
1�

Z rH

rL

x(r)dF (r)

!
: (24)

Note that dW
dx(r)

= PV f(r)
�
r
rA
� 1
�
. Therefore, it is optimal to use a threshold strate-
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gy, whereby investors of high types fully self-insure, xE(r) = S
r
1fr�rEg, for some r

E to

be determined. Moreover, it follows from dW
dx(r)

that rE � rA, depending on whether

the safety constraint is slack.

Slack safety constraint. Suppose that the safety constraint is slack. Then, the

e�cient threshold above which full self-insurance occurs is rE = rA. For the safety

constraint to be indeed slack, we require SF (rA) � �I(rA), where I(rE) � 1�
R rH
rE

=

S
r
dF (r) � 1 � X(rE). We next characterize this inequality and when it holds. In

particular, we state and then prove the following lemma.

Lemma 1 The safety capacity constraint binds at a unique threshold, rSC 2 (rL; rH).

Moreover, there exists a unique level, �S > �, such that rA � rSC if and only if S � �S.

Consider the implicit function H(r) � SF (r)��(1�X(r)). We �rst show that

H equals zero once in its domain [rL; rH ], thus de�ning a threshold value r
SC at which

the safety capacity binds: H(rSC) � 0. Uniqueness follows from strong monotonicity,

since dH(r)
dr

= Sf(r)(1� �
r
) > 0. Existence follows from di�erent signs of its bounds,

since H(rL) = ��
�
1�

R rH
rL

S
�
dF (�)

�
< 0 and H(rH) = S � � > 0. Thus, a unique

rSC 2 (rL; rH) exists. The aggregate safety constraint can be expressed as rE � rSC .

We turn to the construction of the bound �S. By the implicit function theorem,

drSC

dS
< 0 because dH

dS
= F (r) +�

R rH
rE

dF (�)
�

> 0. This strong monotonicity ensures the

uniqueness of �S. To ensure �S > � (so rA < rSC at S ! �), it su�ces to showH(rA) <

0 when S ! �. This condition always holds because �F (rA)��
�
1�

R rH
rA

�
�
dF (�)

�
<

0,
R rH
rA

�
�
�
� 1
�
dF (�) < 0. This boundary condition ensures the existence of �S.

Taking these results together, we have rE = rA when the constraint is slack.
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Binding safety constraint (scarce safety capacity). If S > �S, then the safety

constraint is violated at rA, so the e�cient threshold return has to be lower. As a

result, rE = rSC < rA, since dW
dx

��
r=rSC

< 0 and the planner does not wish to increase

self-insurance beyond what is required to satisfy the aggregate safety constraint.

Participation constraints. Finally, we need to show that the participation con-

straints bind. Since the proceeds from investment can be freely rearranged across

investors (the liquidation proceeds at t = 1 and the return at t = 2), it su�ces to

show that the expected output under the e�cient allocation, Y E, is no smaller than

the expected autarky output, Y A. For S � �S, we have:

Y E � W (`�; x(r) = xE(r)) = PV + S � PV

�
SF (rA)

rA
+

Z rH

rA

S

r
dF (r)

�
: (25)

Comparing both expected outputs, it can be shown that Y E > Y A whenever:

0 <

Z rA

rL

(rA � r)(�� S)

r � �
dF (r); (26)

which always holds. E�ciency pins down the liquidation and self-insurance choices

but the distribution of the surplus across investors is indeterminate.

B Proof of Proposition 4

We derive the expected equity value|that is, the value of investment net of debt

repayment and the cost of liquidation in state RR. The bank takes the face value of

safe debt r� as given and chooses its levels of safe debt, d, and equity, e, to invest,

I = d + e. In state H, the bank continues investment and pays r�d to debt holders
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at t = 2 out of its proceeds, RI. In state L, the bank pays r�d to debt holders at

t = 1 out of the liquidation proceeds, �I. In state RR, the bank partially liquidates

a fraction, `(r�) = r�d
�I
, to pay debt holders. Residual investment, (1 � `)I, earns a

return, R, with conditional probability, 
. Adding up, the expected equity value is:

V (d+ e) = 
� [RI � r�d] + (1� 
)� [�I � r�d] + (1� �)

24 =0z }| {
`�I � r�d+(1� `)
RI

35
= PV e+ PV d

�
1�

r�

rA

�
: (27)

We construct the equilibrium. Let us ignore the participation constraints for now (see

below); characterizing the demand for safety-seeking funding is straightforward given

the linearity of the problem. If r� > rA, then demand is zero. Conversely, if r� < rA,

then demand is unbounded. Since the supply of safety-seeking funding is positive but

�nite, market clearing implies that r� = rE = rA in any equilibrium. Turning to the

participation constraints, the expected equity value in equilibrium is V � = V (r� =

rA) = PV e, so the participation constraint of return-seeking investors is just satis�ed.

There is also an indi�erence between direct and indirect investment via holding bank

equity. It follows that bank pro�ts are zero. Finally, the participation constraint

of safety-seeking investors requires e� � e, which pins down the minimum equity

holdings of banks. Beyond this minimum, our model is silent on the distribution of

endowment between additional bank equity and direct investment.

We turn to the distribution of surplus. By perfect competition, safety-seeking

investors receive all the surplus upon autarky. Banks and equity holders break even.

Finally, we show that the aggregate allocation is feasible. By Lemma 1, suf-

�ciently small safety needs, S � �S, imply that rA � rSC , so the aggregate safety

capacity does not bind. (We consider scarce safety capacity below.)
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C Proof of Proposition 5

We study the comparative statics of the safe rate, r� = rA, and aggregate variables,

such as the volume of safe debt, d� = SF (r�)
r�

; self-insurance, X� =
R rH
r�

S
r
dF (r);

investment, I� = 1�X�; and maximum bank leverage, � � d�

e�
= �

r���
.

First, increases in R, �, �, or 
 increase r� = rA (see Proposition 1). By de�ni-

tion of X�, self-insurance decreases and, therefore, investment I� increases. Second,

consider a reduction in the investment return and an increase in the liquidation value

that keeps PV constant. So, dPV = 0 implies �dR = 1�



�d� > 0. Inserting this

relationship in the total derivative of rA yields:

drA =
(1� �)PV

�
�
1 + (1� �)

�

R

�
� 1
��2 ��(1� 
) +


R

�

�
d� > 0: (28)

Similarly, a reduction in the success probability accompanied by an increase in the

liquidation value that keeps PV constant implies �d
 = (1�
)�
R���

d� > 0, which yields:

drA =
(1� �)PV

�
�
1 + (1� �)

�

R

�
� 1
��2 �R�(1� 
)

R� ��
+

R

�

�
d� > 0: (29)

Thus, in both cases, the equilibrium return, r� = rA, and investment, I� = I(r�),

increase, while self-insurance, X�, decreases.

Third, consider a �rst-order stochastic dominance deterioration in the distri-

bution of self-insurance returns, where G(r) is FOSD by F (r). First, r� = rA is

una�ected by this change as long as S � �S still holds. It follows that d�G = SG(r�)
r�

>

SF (r�)
r�

= d�, X�
F =

R rH
r�

S
r
dG(r) < X�, and therefore I�G > I�F . Maximum bank

leverage, �� = �
rSC��

, is unchanged, however, since minimum bank equity increas-

es with the level of debt. Finally, its derivative with respect to ! 2 fR; 
; �g is
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d��

d!
= �

(r���)2
dr�

d!
.

D Proof of Proposition 6

For scarce safety capacity, S > �S, we have rE = rSC < rA from the binding constraint,

rE � rSC , since the expected output increases at this point, dY
drE

��
rE=rSC

> 0 (see

Appendix A and Lemma 1). As shown before, the competitive banking equilibrium

decentralizes the e�cient allocation, so r� = rSC . Since the safe rate is below its

unconstrained level, aggregate self-insurance increases and investment decreases.

Turning to comparative statics, we use H(r) with H(rSC) � 0 from Lemma

1 and dH
d�

= �I < 0. Thus, drSC

d�
> 0 from the implicit function theorem. If G(r)

�rst-order stochastically dominates F (r), then ~H(r) � SG(r)� �
�
1�

R rH
r

S
�
dG(�)

�
with ~H(rSCG ) � 0. ~H places less weight on realizations that yield S and more weight

on realizations that yield S �
r
< S, so ~H(rSCF ) < 0 and rSCG > rSCF from the strong

monotonicity of ~H in r. Since �� = �
rSC��

, the ranking of maximum leverage follows.

E Proof of Proposition 7

The monopolist banker sets rM , d, e to maximize expected equity value, taking the

impact of the safe rate on the supply of safety-seeking funding, d(rM) = SF (rM )
rM

,

into account. Inserting d(rM) into equation (7) yields the objective function. Total

di�erentiation with respect to the safe rate and equalizing with zero yields the �rst-

order condition stated in equation (10), and implies rM 2 (0; rA). If G(r) dominates

F (r) according to the reverse hazard rate, we have g(r)
G(r)

>
f(r)
F (r)

at r = rMF , so
g(rM

F
)

G(rM
F
)
>

rA

rM
F
(rA�rM

F
)
. Thus, d�

dr

��
G(�);r=rF

M

> 0, which implies rMF < rMG . A reduction in the debt
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level follows from the regularity condition on F (r), while this ranking of safe rates

again implies the ranking for maximum bank leverage.

F Proof of Proposition 8

Since both public and private debt are substitutes for achieving safety, their returns

are equalized, rG = r�. If rG < r�, then the demand for public debt is zero and its

market fails to clear since G > 0, so its return must rise. If rG > r�, then there is

no demand for private debt. We assume that the supply of government debt is too

small to satisfy all private demand, G < �G, so that the safe rate must rise.

The portfolio choice of investors is as in the main model, except that the total

safety needs increase to S + T . Thus, if r > r�, investors self-insure an amount S+T
r
,

so aggregate self-insurance is XG =
R rH
r�

S+T
r
dF (r). If r < r�, investors hold bank

debt or public debt, so total bank debt is dG = (S+T )F (r�)
r�

� G. Since public debt

issuance does not a�ect the interim liquidation of investment, the competitive pricing

of bank debt is una�ected, r� = rA. Using the balanced budget constraint, T = GrA,

we can solve for the upper bound on government debt from dG > 0 and obtain the

value stated in Proposition 8. Crowding out follows: XG > X�, IG < I�, and dG < d�.

We turn to welfare Y G. We add up the value of the public good, g, the investor

income from self-insurance, private debt and public debt, S + T , and the equilibrium

value of the bank (dispersed to investors), PV (IG � dG), which yields:

Y G = Y E + g +GrA
�
1� PV

�Z
rA

dF (r)

r
+
F (rA)

rA

��
: (30)
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G Proof of Proposition 9

The equilibrium lump-sum tax rate is T = �SF (rDI)
1��F (rDI)

, so the volume of debt, the private

provision of safety, is dDI =
SF (rDI)

rDI(1��F (rDI))
and self-insurance isXDI =

S
1��F (rDI)

R rH
rDI

dF (r)
r

.

Partial deposit insurance reduces interim withdrawals and liquidation of a bank,

` = (1��)rd
�I

. Thus, the value of a bank with debt d and equity e is:

VDI = PV (d+ e)� rd

�
� + 
(1� �)

�
�+ (1� �)

R

�

��
+ 
(1� �)

�(1� �)d2

�(d+ e)
: (31)

Since dVDI
de

< PV , it follows that e� = e and I� = rd
�
. For an interior solution

of the debt level (given by the demand for debt stated above), we require dVDI
dd

= 0.

Evaluating at e� yields the safe rate as a function of partial deposit insurance:

rDI(�) =
PV � 
(1� �)�(1� �)�

PV
rA
� 
(1� �)�

�
R
�
� 1� 2(1� �)

� : (32)

It is easy to see that rDI(0) = rA. Di�erentiating and evaluating at � = 0 yields the

impact of marginal deposit insurance on the safe rate:

drDI

d�

����
�=0

=

(1� �)

�

�(R� �) + R

�
PV
�

PV
> 0: (33)

As a result of this and @d
@�

= SF 2

r(1��F )2
> 0, a su�cient condition for an increase in the

private provision of safety after marginal deposit insurance is dd
drDI

� 0, which can be

veri�ed to hold strictly.

Finally, the marginal impact on investment is dIDI
d�

���
�=0

= 1� dXDI
d�

���
�=0

, where:

dXDI

d�

����
�=0

=
SF (rA)

(1� F (rA))2

Z rH

rA

dF (r)

r
�

Sf(rA)

rA(1� F (rA))

drDI

d�

����
�=0

: (34)
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Since
R rH
rA

dF (r)
r

<
1�F (rA)

rA
, a su�cient condition for dIDI

d�

���
�=0

> 0 is F (rA)
f(rA)

� drDI
d�

���
�=0

.

If f(r) has a decreasing reverse hazard rate, the left-hand side of (34) decreases in �,

while its right-hand side increases in �. The existence of a unique �� follows.
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